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On geometric polygroups

F. Arabpur, M. Jafarpour, M. Aminizadeh and
S. Hoskova-Mayerova

Abstract

In this paper, we introduce a geodesic metric space called generalized
Cayley graph (gCay(P,S)) on a finitely generated polygroup. We define
a hyperaction of polygroup on gCayley graph and give some properties
of this hyperaction. We show that gCayley graphs of a polygroup by two
different generators are quasi-isometric. Finally, we express a connection
between finitely generated polygroups and geodesic metric spaces.

1 Introduction

Geometric group theory is a field in mathematics devoted to the study of
finitely generated groups via exploring the connections between algebraic prop-
erties of such groups and topological and geometric properties of spaces on
which these groups act. An idea in geometric group theory is to consider
finitely generated groups themselves as geometric objects. This is usually
done by studying the Cayley graphs of groups which, in addition to the graph
structure, are endowed with the structure of a metric space, given by the so-
called word metric. Geometric group theory, as a distinct area, is relatively
new and became a clearly identifiable branch of mathematics in the late 1980s.
Geometric group theory closely interacts with low-dimensional topology, hy-
perbolic geometry, algebraic topology [1, 2], computational group theory and
differential geometry. There are also substantial connections with complex-
ity theory, mathematical logic, the study of Lie Groups and their discrete
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subgroups, dynamical systems, probability theory, K-theory, and other areas
of mathematics. The reader will find in [16, 25] some basic definitions and
theorems about geometric group theory. In 1934 Marty at 8th congress of
Scandinavian Mathematicians introduced the notion of hypergroup as a gen-
eralization of groups and after, he proved its utility in solving some problems
of groups, algebraic functions and rational fractions [29]. Surveys of the the-
ory can be found in the books of Corsini [11], Davvaz and Leoreanu-Fotea [14],
Davvaz and Cristea [15], Corsini and Leoreanu [12], Vougiouklis [34] and in the
paper of Hoskova and Chvalina [19]. In recent years, the theory of hyperstruc-
tures has been refreshed in connection with various fields. This is basically
done by A. Connes and C. Consani in connection to number theory, incidence
geometry, and geometry in characteristic one [7, 8, 9], O.Viro in connection to
tropical geometry [32, 33], and M. Marshall in connection to quadratic forms
and real algebraic geometry [18, 28]. Moreover, hyperstructures have certain
relations with recently introduced algebraic objects such as supertropical alge-
bras by Z. Izhakian and L. Rowen [20, 21], blueprints by O. Lorscheid [26, 27].
These are algebraic objects which aim to provide a firm algebraic foundation
to tropical geometry. J. Jun also applied an idea of hyperstructures to gener-
alize the definition of valuations in [24]. Some other connections of algebraic
geometry over hyperstructures can be find in [3, 6, 17, 22, 23, 30].

In this paper first, using some geometric notions we generalize the notion
of Cayley graph for the class of finitely polygroups [4]. Second, we investigate
some properties of metric dS on the generalized Cayley graph gCay(P, S).
Third by the notion of hyperaction of hypergroups introduced in [36] we show
that a left hyperaction of a good polygroup P =< S > on gCay(P, S) is proper
and strongly cobounded. Then we prove that gCay(P, S) is well-defined up
to quasi-isometry. Finally, we express the definition of geodesic metric space
and then we show that gCay(P, S) is a geodesic metric space. Also we prove
that if polygroup P that for all a, b ∈ P , |ab| <∞ acts properly and strongly
coboundedly on the geodesic metric space X, then P is finitely generated and
gCay(P, S) is quasi-hyperisometric to X. In the following we recall some basic
notions of hypergroup theory.

2 Preliminaries

Definition 2.1. ([5],[11], [12]) Let H be a non-empty set and ∗ : H ×H −→
P
∗
(H) be a hyperoperation. The couple (H, ∗) is called a hypergroupoid. For

any two non-empty subset A and B of H and x ∈ H, we define

A ∗B =
⋃

a∈A,b∈B

a ∗ b , A ∗ x = A ∗ {x}.
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Definition 2.2. ([11], [12], [13]) A hypergroupoid (H, ∗) is called hypergroup
if for all a, b, c of H, it satisfies the following conditions:

(1) (a ∗ b) ∗ c = a ∗ (b ∗ c), which means that⋃
u∈a∗b

u ∗ c =
⋃
v∈b∗c

a ∗ v,

(2) a ∗H = H = H ∗ a.

Definition 2.3. ([11], [12]) Let (H, ∗) be a hypergroup and ∅ 6= K ⊂ H. We
say that (K, ∗) is a subhypergroup of H if for all x ∈ K we have K ∗ x =
K = x ∗K.

Let (H, ∗) be a hypergroup, an element e of H is called identity if for all
x ∈ H,x ∈ x ∗ e ∩ e ∗ x and for a ∈ H an element a′ of H is called an inverse
of a, if e ∈ a′ ∗ a∩ a ∗ a′, for some identity e.We denote the set of identities of
H by E(H) and the set of inverses of a by i(a).

For any a, b ∈ (H, ∗), we define a/b = {x | a ∈ x ∗ b} and a \ b = {y | b ∈
a ∗ y}. Now let A be a non-empty subset of hypergroup (H, ∗). Denote A0 =
A∪(A∗A)∪(A/A)∪(A\A) and An+1 = An∪(An∗An)∪(An/An)∪(An\An),
where A/B = ∪a∈A,b∈Ba/b and A \B = ∪a∈A,b∈Ba \ b.

Theorem 2.4. ( [11], Theorem 78) < A >= ∪n≥0An is the least closed
subhypergroup of H.

Let H =< A > and A be a finite set (|A| < ∞). Then we say that the
hypergroup H is a finitely generated hypergroup.

Definition 2.5. ([4], [10], [35]) A polygroup (P, ·) is a non-empty set equipped
with a hyperoperation ” · ” with the following properties:

(1) (a · b) · c = a · (b · c), ∀a, b, c ∈ P,

(2) ∃!e ∈ E(P ) such that e · a = a = a · e, ∀a ∈ P,

(3) ∀a ∈ P ∃!b ∈ i(a) such that e ∈ a · b. We denote b = a−1,

(4) a ∈ b · c⇒ b ∈ a · c−1, c ∈ b−1 · a, ∀a, b, c ∈ P.

Let X be a non-empty subset of a polygroup P and {Ai| i ∈ J} be the
family of all subpolygroups of P in which contain X. Then we have

∩i∈JAi =< X >= ∪
{
xε11 · . . . · x

εk
k | xi ∈ X, k ∈ N, εi ∈ {−1, 1}

}
.

IfX = {x1, x2, . . . , xn}, then the subpolygroup< X > is denoted< x1, . . . , xn > .
The finitely generated polygroup P is called good if for all a, b ∈ P , |ab| <∞.
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Definition 2.6. [25] A metric space is an ordered pair (X, d), where X is a
set and d is a metric on X, i.e., a function d : M ×M −→ R such that for all
x, y, z ∈ X, the followings hold:

(1) d(x, y) ≥ 0,

(2) d(x, y) = 0⇔ x = y,

(3) d(x, y) = d(y, x),

(4) d(x, y) ≤ d(x, z) + d(z, y).

Definition 2.7. [25] Let X be a metric space. We define distance point x ∈ X
from set A ⊆ X to form d(x,A) = inf{d(x, a) | a ∈ A} and if |A| < ∞, then
d(x,A) = min{d(x, a) | a ∈ A}.

In the following we express the definition of a meter in an arbitrary graph.
Recall that a graph Γ consists of points called vertices and copies of [0, 1]
connecting pairs of vertices called edges. Also, interiors of distinct edges are
disjoint. Suppose that we assigned to each edge e of a given connected graph
Γ some positive number l(e), (its length). Then we can define on Γ a meter,
which we describe it now. For each edge e fix a homeomorphism φe : e −→ [0, 1]
as in the definition of edge. Define the auxiliary function ρ in the following way.
If x, y belong to the same edge e, then define ρ(x, y) = l(e) | φe(x) − φe(y) |,
and otherwise set ρ(x, y) = +∞. Finally, set

d(x, y) = inf
∑

x=x0,...,xn=y

ρ(xi, xi+1).

{xi}i∈N as above is usually called chain from x to y.

Lemma 2.8. ([31], Lemma 2.1.1) In the above definition we can equivalently
only take chains x = x0, ..., xn = y with the additional constraint that xi is a
vertex for i 6= 0, n.

3 Generalization of Cayley graph (gCay(P, S))

In this section we extend the notion of Cayley graph of a group to a gen-
eral framework of hyperstructures. A generalized Cayley graph of a finitely
generated polygroup has been introduced and investigated.

Definition 3.1. Let P =< A > be a finitely generated polygroup and S =
A ∪ A−1. Then the generalized Cayley graph of P with respect to S or for
simplicity gCay(P, S) is the metric graph with
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(1) set of vertices is P ,

(2) for a, b ∈ P and a 6= b an edge connecting a, b if and only if there exist
s ∈ S such that b ∈ as or equivalently a−1b ∩ S 6= ∅,

(3) all edges are of length 1.

In the following P = (P, ·) will always denote a polygroup generated by the
finite set A and assume S = A∪A−1. We also for all a, b ∈ P denote a · b = ab
and we denote the metric on gCay(P, S) as dS .

Example 3.2. Suppose commutative polygroup (P, ·) is as follows:

· e a b
e e a b
a a {e, b} {a, b}
b b {a, b} {e, a}

P is generated by {a}. Then gCay(P, {a}) looks like this:

a
e b

Example 3.3. Let P = {e, a, b, c, d, f, g}. Consider the polygroup (P, ·), where
· is defined on P as follows:

· e a b c d f g
e e a b c d f g
a a e b c d f g
b b b {e, a} g f d c
c c c f {e, a} g b d
d d d g f {e, a} c b
f f f c d b g {e, a}
g g g d b c {e, a} f

It is easy to see that P =< c, d >. Set S = {c, d}. Then gCay(P, {c, d}) looks
like this:

e

gf
a

d

b

c
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Lemma 3.4. For a 6= b in P, we have

dS(a, b) = min{n | ∃(s1, ..., sn) ∈ Sn : b ∈ as1...sn}.

Proof. Let min{n | ∃(s1, ..., sn) ∈ Sn : b ∈ as1...sn} = t. We show that
dS(a, b) = t. First, let x0 = a, x1, ..., xn−1, xn = b be a chain from a to b
such that by Lemma 2.8, xi ∈ P, for 0 ≤ i ≤ n. For all 0 ≤ i ≤ n − 1,
there exist an edge from xi to xi+1. So by definition of gCay(P, S) there exist
(s1, ..., sn) ∈ Sn such that

x1 ∈ x0s1 = as1

x2 ∈ x1s2 ⊆ as1s2
.

.

xn−1 ∈ xn−2sn−1 ⊆ as1s2...sn−1
b = xn ∈ xn−1sn ⊆ as1s2...sn.

Thus t ≤ dS(a, b). Now let (s1, ..., st) ∈ St (t-ary Cartesian product over S)
such that b ∈ as1s2...st. Therefore

b ∈ xt−1st s.t. xt−1 ∈ as1...st−1
xt−1 ∈ xt−2st−1 s.t. xt−2 ∈ as1...st−2

.

.

x3 ∈ x2s3 s.t. x2 ∈ as1s2
x2 ∈ x1s2 s.t. x1 ∈ as1.

We set xt = b, x0 = a. By definition of gCay(P, S) there exist an edge
from xi to xi+1, i = 0, .., t. So {xi}i=ti=0 is a chain from a to b. Therefore
dS(a, b) ≤ t.

In other words, for all a 6= b in P, the distance between a, b is the minimum
”n” such that a−1b ∩ s1...sn 6= ∅ and si ∈ S. Notice that dS(a, b) = 0 if and
only if a = b.

Remark 3.5. For all a ∈ P we have dS(e, a) = min{n | ∃(s1, ..., sn) ∈ Sn :
a ∈ s1...sn}. We denote dS(e, a) = |a|S.

Proposition 3.6. For all a 6= b in P , we have dS(a, b) = min{dS(e, u) | u ∈
a−1b}.
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Proof. Let dS(a, b) = t. Then there exists (s1, ..., st) ∈ St such that b ∈
as1...st. So b ∈ au, u ∈ s1...st. Therefore u ∈ a−1b and according to Remark
3.5 dS(e, u) ≤ t. Thus min{dS(e, u) | u ∈ a−1b} ≤ t. Now let min{dS(e, u) |
u ∈ a−1b} = k. Thus for u ∈ a−1b there exist (s1, ..., sk) ∈ Sk such that
u ∈ s1...sk. Since u ∈ a−1b we have b ∈ au ⊆ as1...sk. Thus dS(a, b) ≤ k.

Corollary 3.7. Notice that by proposition 3.6, for all a 6= b in P we have
dS(a, b) = dS(e, a−1b).

Remark 3.8. For all x, y in the gCay(P, S) that do not lie on a common edge
we have

dS(x, y) = inf{dS(x, a) + dS(a, b) + dS(b, y) | dS(x, a) < 1, dS(b, y) < 1}.

4 Hyperaction of gCay(P, S)

Using the notion of generalized Cayley graphs of polygroups we introduce the
hyperaction of a generalized Cayley graph of a finitely generated polygroup
and prove that some hyperactions can be strongly cobounded.

Definition 4.1. [36] Let X be a non-empty set and (H, ∗) be a hypergroup such
that E(H) 6= ∅. A left hyperaction of H on X is a map · : H ×X −→ P

∗
(X)

such that

(i) for all a, b ∈ H and for all x ∈ X, a · (b · x) = (a ∗ b) · x, such that
A · Y = ∪a∈A,y∈Y a · y for all non-empty subsets A and Y of H and X,
respectively;

(ii) for all x ∈ X and e ∈ E(H), x ∈ e · x.

In the following we define a left hyperaction of polygroup P on gCay(P, S).
First we need to prove the following lemma.

Lemma 4.2. For all a, b, c ∈ P , if there exists an edge from b to c then there
are edges between ab and ac.

Proof. Suppose that there exists an edge from b to c. We have b−1c ⊆
b−1a−1ac = (ab)−1ac. Since b−1c ∩ S 6= ∅, so (ab)−1ac ∩ S 6= ∅. Therefore
there is at least an edge between ab and ac.

Now for a ∈ P and x ∈ gCay(P, S) we define the map

ϕ : P × gCay(P, S) −→ P∗(gCay(P, S))
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such that ϕ(a, x) = a ·x = ax, if x is a vertex and for x on the edge from, say,
b to c,

ϕ(a, x) = a · x = {α ∈ Epq | dS(p, α) = dS(b, x), p ∈ ab, q ∈ ac, p−1q ∩ S 6= ∅},

where Epq is edge from p to q.

Theorem 4.3. ϕ is a left hyperaction of P on gCay(P, S).

Proof. We give a brief proof for showing that ϕ is a hyperaction. If x is a
vertex then ϕ(a, x) = a · x = ax. It is clear that the conditions (i) and (ii) in
Definition 3.1 hold. So let x lies on the edge from b to c. By Lemma 3.2, there
are edges from ab to ac. Thus ∅ 6= ϕ(a, x) ⊆ gCay(P, S). Now let e ∈ E(P ).
We have

ϕ(e, x) = e · x = {α | dS(p, α) = dS(b, x), p ∈ eb = b, q ∈ ec = c, p−1q ∩ S 6= ∅}
= {α | dS(b, α) = dS(b, x), b−1c ∩ S 6= ∅}.

Therefore x ∈ e ·x. Now let a1, a2 ∈ P . We show that a1 · (a2 ·x) = (a1a2) ·x,
i.e., ⋃

t∈a2·x
a1 · t =

⋃
s∈a1a2

s · x.

Let u ∈ ∪t∈a2·xa1 · t, so dS(p, u) = dS(v, t) = dS(b, x), v ∈ a2b, p ∈ a1(a2b) =
(a1a2)b. Thus p ∈ sb such that s ∈ a1a2. Therefore u ∈ ∪s∈a1a2s · x. Now let
u ∈ ∪s∈a1a2s · x. So dS(p, u) = dS(b, x) such that p ∈ sb ⊆ (a1a2)b = a1(a2b).
Therefore p ∈ a1v, v ∈ a2b. Because t ∈ a2 · x, so dS(p′, t) = dS(b, x) in which
p′ ∈ a2b. Hence dS(p, u) = dS(p′, t). Therefore u ∈ ∪t∈a2·xa1 · t.

Recall that, if (X, d) be a metric space, the open ball of radius r > 0,
centered at x0 ∈ X, denoted by Br(x0), is defined by Br(x0) = {x ∈ X |
d(x, x0) < r}.

Definition 4.4. A hyperaction of the hypergroup H on the metric space X,
say, · : H × X −→ P

∗
(X) is proper if for any x ∈ X and any ball B ⊆ X,

there are only finitely many elements of H, say, hi, such that hi · x ∩B 6= ∅.

Lemma 4.5. Let P be a good polygroup. Then for all ball Br(x0) ⊆ gCay(P, S)
we have |P ∩Br(x0)| <∞.

Proof. Let hi ∈ P ∩ Br(x0), i ∈ N. So hi is a vertex and dS(x0, hi) < r. We
consider two case. In the first case, let x0 ∈ P . If r < 1, then hi = x0. It is
sufficient to prove the problem for 1 ≤ r. We have dS(x0, hi) < r, thus there
exist n < r and (si1, ..., sin) ∈ Sn such that x−10 hi ∩ si1...sin 6= ∅. We set

C = ∪{si1...sin | x−10 hi ∩ si1...sin 6= ∅, (si1, ..., sin) ∈ Sn, n < r},
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Since n < r and by assumption |si1...sin| <∞, so C is finite (notice that P is
a good polygroup). Therefore there exists j such that for all k ≥ j we have

x−10 hk ∩ C ⊆
⋃i=j
i=1 x

−1
0 hi ∩ C. Now let ai ∈ x−10 hi ∩ C, thus hi ∈ x0ai. So

{hi}i=ji=1 ⊆
⋃
ai∈C x0ai. Since |C| < ∞, |x0ai| < ∞, so |{hi}i=ji=1| < ∞. On the

other side {hs}s>j ⊆ {hi}i=ji=1. Hence number of hi is finite. In the second
case, let x0 be on the edge from a to b and let hi ∈ P ∩ Br(x0), i ∈ N. By
triangular inequality we have dS(a, hi) ≤ dS(a, x0) + dS(x0, hi) < 1 + r. Now
according to the first case, number of hi is finite.

Theorem 4.6. If P is a good polygroup, then the hyperaction of P on
gCay(P, S) is proper.

Proof. Consider hyperaction

· : P × gCay(P, S)→ P∗(gCay(P, S)).

Let the open ball Br(x0) and x ∈ gCay(P, S). If x ∈ P , then for all hi ∈ P
we have hi · x ⊆ P . Now if |{hi | hi · x ∩ Br(x0) 6= ∅}| is infinite, then
|P ∩ Br(x0)| = ∞ which is a contradiction by Lemma 3.5. Therefore there
exist only finitely many hi ∈ P such that hi · x ∩ Br(x0) 6= ∅. In other case,
let x be on the edge a to b. In this case let hi ∈ P and z ∈ hi · x ∩ Br(x0),
then dS(z, x0) < r and there exists p ∈ hia such that dS(p, z) = dS(a, x).
We have dS(p, x0) ≤ dS(p, z) + dS(z, x0) < 1 + r. Therefore p ∈ Br+1(x0).
Hence hia ∩ Br+1(x0) 6= ∅. By previous part number of hi is finite. So the
hyperaction is proper.

Definition 4.7. A hyperaction of a hypergroup H on the metric space X,
say, · : H ×X −→ P

∗
(X) is called cobounded if there exists a ball Br(x0) ⊆ X

such that for all x ∈ X, there is h ∈ H, that dX(x, h · x0) < r. Moreover a
cobounded hyperaction is said strongly cobounded if, for all g, h ∈ H we have

dX(g · x0, h · x0) = dX(x0, g
−1h · x0).

Theorem 4.8. Let P be a finitely generated polygroup.Then the hyperaction
of P on gCay(P, S), i.e. ϕ, is strongly cobounded.

Proof. For proving coboundedly, we consider x0 = e and r = 1. Let y ∈
gCay(P, S). If y ∈ P , then dS(y, y · e) = dS(y, y) = 0 < 1. If y is on the edge
from a to b, then dS(y, a · e) = dS(y, a) < 1. Therefore ϕ is cobounded. Now
by Corollary 3.7, for a, b ∈ P we have dS(a ·e, b ·e) = dS(a, b) = dS(e, a−1b) =
dS(e, a−1b · e). Consequently ϕ is strongly cobounded.
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5 Generalized cayley graphs and quasi-isometries

In this section we show that the gCayley graph of a given polygroup is well-
defined up to quasi-isometry.

Definition 5.1. Let X,Y be metric spaces and let f : X −→ Y be a map
from X to Y . We say that f is a (K,C)-quasi-isometric embedding if, for all
x, y ∈ X we have

dX(x, y)

K
− C ≤ dY (f(x), f(y)) ≤ KdX(x, y) + C.

The (K,C)-quasi-isometric embedding f is a (K,C)-quasi-isometry if, for all
y ∈ Y there exist some x ∈ X with dY (f(x), y) ≤ C.

Example 5.2. Let x, y ∈ R2, the map t 7→ tx + y from R to R2 is a quasi-
isometric embedding.

Proposition 5.3. ( [31], Proposition 3.0.3.) Composition of quasi-isometric
embedding (quasi-isometries) is a quasi-isometric embedding (quasi-isometries).

Now we show that the gCayley graph of a given polygroup is well-defined
up to quasi-isometry.

Theorem 5.4. Let P be a polygroup and A,A′ be two finite generating sets
for P . Also let S = A∪A−1 and S′ = A′∪A′−1

. Then the identity id : P −→ P
extends to a quasi-isometry h: gCay(P, S) −→ gCay(P, S′).

Proof. Consider the composition

gCay(P, S)
ψ−→ (P, dS)

id−→ (P, dS′)
ι−→ gCay(P, S′),

where ı is the inclusion map and

ψ(a) =

a if a ∈ P

h h ∈ P, d(a, h) ≤ 1

2
otherwise.

For all a ∈ gCay(P, S) we have dS(ψ(a), a) ≤ 1

2
, so by triangular inequality

dS(a, b)− 1 ≤ dS(a, ψ(a)) + dS(ψ(a), ψ(b)) + dS(ψ(b), b)− 1

≤ dS(ψ(a), ψ(b)) ≤ dS(ψ(a), a) + dS(a, b) + dS(b, ψ(b))

≤ dS(a, b) + 1.
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Therefore ψ(a) is (1, 1)-quasi-isometry. Also ι is (1, 1)-quasi-isometry. By
Proposition 5.3, the above composition is a quasi-isometry if id : (P, dS) −→
(P, dS′) is too. We set

M = Max{|x′|S , |x|S′ : x ∈ S, x′ ∈ S′}.

Now let a, b ∈ P and dS(a, b) = k. By Remark 3.5 and Proposition 3.6 we
have

|a−1b|S = dS(e, a−1b) = min{dS(e, u) | u ∈ a−1b} = dS(a, b) = k.

Hence there exists (s1, ..., sk) ∈ Sk such that a−1b ∩ s1...sk 6= ∅. On the other
side we let

|s1|S′ = m1 ⇒ ∃(s′1,1, ..., s′1,m1
) ∈ S′m1

: s1 ∈ s′1,1...s′1,m1

. . . .

. . . .

. . . .
|sk|S′ = mk ⇒ ∃(s′k,1, ..., s′k,mk

) ∈ S′mk : sk ∈ s′k,1...s′k,mk
.

For some mi ≤M . Therefore

∅ 6= a−1b ∩
k∏
i=1

si ⊆ a−1b ∩ (

m1∏
i=1

s′1,i)...(

mk∏
i=1

s′k,i).

Hence
dS′(a, b) = |a−1b|S′ ≤Mk ≤MdS(a, b).

The inequality dS ≤MdS′ follows using the same argument. Consequently

dS′(a, b)

M
≤ dS(id(a), id(b)) ≤MdS′(a, b).

Therefore id is a quasi-isometry embedding.
Thus id : gCay(P, S)→ gCay(P, S′) is a quasi-isometry.

6 Generalized Cayley graphs and geodesic metric spaces

In this section, we express the definition of geodesic metric space and then we
show that gCay(P, S) is a geodesic metric space. Also we prove that polygroup
P such that for all a, b ∈ P , |ab| <∞ acts properly and strongly coboundedly
on the geodesic metric space X, then P is finitely generated and gCay(P, S)
is quasi-hyperisometric to X.
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If X is a metric space then a path in X is a continuous map α : [0, 1] → X.
We define the length of α as

l(α) = sup
∑

0=t0≤...≤tn=1

dX(α(ti), α(ti+1)),

where α(0) is initial point and α(1) is terminal point.

Proposition 6.1. ([31], Remark 2.4.1) For any path α, we have

l(α) ≥ dX(α(0), α(1)).

Proposition 6.2. ([31], Remark 2.4.2) If we denote the concatenation of the
paths α, β by α ∗ β, then l(α ∗ β) = l(α) + l(β).

In the following we define the notion of geodesic metric space.

Definition 6.3. A path α is geodesic if l(α) = dX(α(0), α(1)). The metric
space X is geodesic if for all pair of points of X there is a geodesic connecting
them.

Theorem 6.4. The metric space gCay(P, S) is a geodesic.

Proof. Let x, y ∈ gCay(P, S). We consider three cases. First, if x and y lie on
a common edge, then path α is partial of edge that placed among x and y. So
it is clear that l(α) = dS(x, y) = dS(α(0), α(1)). Second, if x and y be vertex
and dS(x, y) = n, then by Lemma 3.4 there exist (s1, ..., sn) ∈ Sn such that
y ∈ xs1...sn. We consider xi ∈ xs1...si, where 1 ≤ i ≤ n and x0 = x, xn = y.
Also dS(xi, xi+1) = 1, for 0 ≤ i ≤ n − 1. In this case let path αi : [0, 1] →
gCay(P, S) be edge from xi to xi+1 such that αi(0) = xi and αi(1) = xi+1 for
0 ≤ i ≤ n − 1. We have l(αi) = 1. If we set α = α0 ∗ α1 ∗ ... ∗ αn−1, then by
Proposition 6.2 l(α) = l(α0) + ...+ l(αn−1) = n = d(x, y). Third, if x, y /∈ P
and x,y do not lie on a common edge, then according to first and second cases
also Remark 3.8, the proof is obviously.

Definition 6.5. Let X,Y be metric spaces and let f : X −→ P∗(Y ) be a map
from X to P∗(Y ). We say that f is a (K,C)-quasi-hyperisometric embedding
if, for all x, y ∈ X we have

dX(x, y)

K
− C ≤ dY (f(x), f(y)) ≤ KdX(x, y) + C.

The (K,C)-quasi-hyperisometric embedding f is a (K,C)-quasi-hyperisometry
if, for all y ∈ Y there exist some x ∈ X with dY (f(x), y) ≤ C.
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Theorem 6.6. Let P be a polygroup with this condition that for all a, b ∈ P ,
|ab| < ∞. If P acts properly and strongly cobounded on the geodesic metric
space X, then

(1) P is a good polygroup,

(2) gCay(P, S) is quasi-hyperisometric to X.

Proof. (1) Consider the proper and strongly cobounded hyperaction · : P ×
X −→ P

∗
(X). Since hyperaction is cobounded there exists Br(x0) such that

for all x ∈ X, there exists c ∈ P , that dX(x, c · x0) < r. Let a ∈ P and
b ∈ a ·x0. We can connect x0 to b by a geodesic. On this geodesic we consider
a sequence of points x0 = y0, y1, ..., yn = b such that yi ∈ X, dX(y0, y1) ≤
1, dX(yn−1, yn) ≤ 1 and dX(yi, yi+1) = 1, for 1 ≤ i ≤ n− 2. By coboundedly
for all 0 ≤ i ≤ n, there exist ai ∈ P such that dX(yi, ai ·x0) < r, where a0 = e
and an = a. We set

S = {h ∈ P | h · x0 ∩B2r+1(x0) 6= ∅}.

Notice that ∅ 6= S is finite, because the hyperaction is proper. Now we show
that for ai ∈ P, 0 ≤ i ≤ n we have a−1i ai+1 ∩ S 6= ∅. By strongly coboundedly
for all i, 0 ≤ i ≤ n, we have

dX(x0, a
−1
i ai+1 · x0) = dX(ai · x0, ai+1 · x0)

≤ dX(ai · x0, yi) + dX(yi, yi+1) + dX(yi+1, ai+1 · x0)

≤ 2r + 1.

Therefore a−1i ai+1∩S 6= ∅. Thus there is si+1 ∈ S such that ai+1 ∈ aisi+1,
for 0 ≤ i ≤ n− 1. So we have

a = an ∈ an−1sn ⊆ an−2sn−1sn ⊆ ... ⊆ a0s1s2...sn = s1s2...sn,

i.e. we write an arbitrary a ∈ P as a product of elements of S. Hence
polygroup P generates by finite set S and so it is a good polygroup. (2) We
define the map f : gCay(P, S)→ P∗(X) by f(a) = a · x0 for any given choice
of x0 ∈ X. Recall that according to Theorem 5.4, f is defined only on the
vertex set. Again we consider geodesic from x0 to b ∈ a·x0. For all b ∈ a·x0 we
have dX(x0, b) ≥ n− 2 and thus dX(x0, a · x0) ≥ n− 2. Also since a ∈ s1...sn,
so

|a|S ≤ n ≤ dX(x0, a · x0) + 2.

Now let |a|S = k, thus a ∈ s1...sk such that si ∈ S. Therefore a ∈ ak−1sk,
that ak−1 ∈ s1...sk−1. By continuing this process we have ai+1 ∈ aisi+1 such
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that ai ∈ s1...si, for 1 ≤ i ≤ k − 1, a0 = e and ak = a . So si+1 ∈ a−1i ai+1.
By triangular inequality and strongly cobounded we have

dX(x0, a · x0) ≤
k−1∑
i=0

dX(ai · x0, ai+1 · x0) =

k−1∑
i=0

dX(x0, a
−1
i ai+1 · x0)

≤
k−1∑
i=0

dX(x0, si+1 · x0) ≤ k(2r + 1) = |a|S(2r + 1).

Therefore we get

dS(e, a)− 2 ≤ dX(f(e), f(a)) ≤ dS(e, a)(2r + 1).

In a way similar to Corollary 3.7, f is a quasi-hyperisometric embedding.
Also by coboundedness f is a quasi-hyperisometry.

7 Conclusions

Since 1934, when Marty [29] defined hypergroup as a generalization of a group,
many connections between hyperstructures and other branches of mathemat-
ics have been developed. This theory is rich in applications, for instance in
geometry and graphs. Till now the study of Geometric group theory has been
devoted to the study of finitely generated groups via exploring the connections
between algebraic properties of such groups and topological and geometric
properties of spaces on which these groups act. In this article we extend it
to the general framework of hyperstructures called polygroups. A generalized
Cayley graph of a finitely generated polygroup has been introduced and stud-
ied. Based on this notion we have shown that the generalized Cayley graph
of a polygroup by two different generators are quasi-isometic. Moreover, a
connection between geodesic metric spaces and the generalized Cayley graphs
of a polygroup has been investigated.
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